On Congruence Conditions for Primality

نویسنده

  • Sherry Gong
چکیده

For any k ≥ 0, all primes n satisfy the congruence nσk(n) ≡ 2 mod φ(n). We show that this congruence in fact characterizes the primes, in the sense that it is satisfied by only finitely many composite n. This characterization generalizes the results of Lescot and Subbarao for the cases k = 0 and k = 1. For 0 ≤ k ≤ 14, we enumerate the composite n satisfying the congruence. We also prove that any composite n which satisfies the congruence for some k satisfies it for infinitely many k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cyclotomic primality tests

In 1980, L. Adleman, C. Pomerance, and R. Rumely invented the first cyclotomic primality test, and shortly after, in 1981, a simplified and more efficient version was presented by H.W. Lenstra for the Bourbaki Seminar. Later, in 2008, Rene Schoof presented an updated version of Lenstra’s primality test. This thesis presents a detailed description of the cyclotomic primality test as described by...

متن کامل

The Miller–rabin Test

The Fermat and Solovay–Strassen tests are each based on translating a congruence modulo prime numbers, either Fermat’s little theorem or Euler’s congruence, over to the setting of composite numbers and hoping to make it fail there. The Miller–Rabin test uses a similar idea, but involves a system of congruences. For an odd integer n > 1, factor out the largest power of 2 from n− 1, say n− 1 = 2e...

متن کامل

Partial Semigroups and Primality Indicators in the Fractal Generation of Binomial Coefficients to a Prime Square Modulus

This paper, resulting from two summer programs of Research Experience for Undergraduates, examines the congruence classes of binomial coefficients to a prime square modulus as given by a fractal generation process for lattice path counts. The process depends on the isomorphism of partial semigroup structures associated with each iteration. We also consider integrality properties of certain crit...

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

A Remark on Primality Testing and Decimal Expansions

We show that for any fixed base a, a positive proportion of primes become composite after any one of their digits in the base a expansion is altered; the case where a = 2 has already been established by Cohen and Selfridge [‘Not every number is the sum or difference of two prime powers’, Math. Comput. 29 (1975), 79–81] and Sun [‘On integers not of the form ±pa ± qb’, Proc. Amer. Math. Soc. 128 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010